Input # NAG Fortran Library Routine Document #### C06GSF Note: before using this routine, please read the Users' Note for your implementation to check the interpretation of **bold italicised** terms and other implementation-dependent details. ## 1 Purpose C06GSF takes m Hermitian sequences, each containing n data values, and forms the real and imaginary parts of the m corresponding complex sequences. # 2 Specification SUBROUTINE CO6GSF(M, N, X, U, V, IFAIL) INTEGER M, N, IFAIL real X(M*N), U(M*N), V(M*N) # 3 Description This is a utility routine for use in conjunction with C06FPF and C06FQF (see the C06 Chapter Introduction). #### 4 References None. ### 5 Parameters 1: M – INTEGER Input On entry: the number of Hermitian sequences, m, to be converted into complex form. Constraint: $M \ge 1$. 2: N – INTEGER Input On entry: the number of data values, n, in each sequence. Constraint: $N \ge 1$. 3: X(M*N) - real array On entry: the data must be stored in X as if in a two-dimensional array of dimension (1:M, 0:N-1); each of the m sequences is stored in a **row** of the array in Hermitian form. If the n data values z_j^p are written as $x_j^p + iy_j^p$, then for $0 \le j \le n/2$, x_j^p is contained in X(p,j), and for $1 \le j \le (n-1)/2$, y_j^p is contained in X(p,n-j). (See also Section 2.1.2 of the C06 Chapter Introduction.) 4: U(M*N) - real array Output 5: V(M*N) - real array Output On exit: the real and imaginary parts of the m sequences of length n, are stored in U and V respectively, as if in two-dimensional arrays of dimension (1:M, 0:N-1); each of the m sequences is stored as if in a **row** of each array. In other words, if the real parts of the pth sequence are denoted by x_j^p , for $j=0,1,\ldots,n-1$ then the mn elements of the array U contain the values $$x_0^1, x_0^2, \dots, x_0^m, x_1^1, x_1^2, \dots, x_1^m, \dots, x_{n-1}^1, x_{n-1}^2, \dots, x_{n-1}^m$$ [NP3546/20A] C06GSF.1 #### 6: IFAIL – INTEGER Input/Output On entry: IFAIL must be set to 0, -1 or 1. Users who are unfamiliar with this parameter should refer to Chapter P01 for details. On exit: IFAIL = 0 unless the routine detects an error (see Section 6). For environments where it might be inappropriate to halt program execution when an error is detected, the value -1 or 1 is recommended. If the output of error messages is undesirable, then the value 1 is recommended. Otherwise, for users not familiar with this parameter the recommended value is 0. When the value -1 or 1 is used it is essential to test the value of IFAIL on exit. ## 6 Error Indicators and Warnings If on entry IFAIL = 0 or -1, explanatory error messages are output on the current error message unit (as defined by X04AAF). Errors or warnings detected by the routine: ``` \begin{aligned} \text{IFAIL} &= 1 \\ &\quad \text{On entry, } M < 1. \\ \\ \text{IFAIL} &= 2 \\ &\quad \text{On entry, } N < 1. \end{aligned} ``` # 7 Accuracy Exact. #### **8 Further Comments** None. # 9 Example This program reads in sequences of real data values which are assumed to be Hermitian sequences of complex data stored in Hermitian form. The sequences are then expanded into full complex form using C06GSF and printed. #### 9.1 Program Text **Note:** the listing of the example program presented below uses *bold italicised* terms to denote precision-dependent details. Please read the Users' Note for your implementation to check the interpretation of these terms. As explained in the Essential Introduction to this manual, the results produced may not be identical for all implementations. ``` CO6GSF Example Program Text Mark 14 Revised. NAG Copyright 1989. .. Parameters .. MMAX, NMAX TNTEGER (MMAX=5,NMAX=20) PARAMETER NIN, NOUT INTEGER (NIN=5, NOUT=6) PARAMETER .. Local Scalars .. INTEGER I, IFAIL, J, M, N .. Local Arrays .. real U(MMAX*NMAX), V(MMAX*NMAX), X(MMAX*NMAX) .. External Subroutines .. EXTERNAL CO6GSF .. Executable Statements .. WRITE (NOUT,*) 'CO6GSF Example Program Results' Skip heading in data Ûle READ (NIN, *) 20 READ (NIN, *, END=100) M, N ``` C06GSF.2 [NP3546/20A] ``` IF (M.LE.MMAX .AND. N.LE.NMAX) THEN DO 40 J = 1, M READ (NIN,*) (X(I*M+J),I=0,N-1) 40 CONTINUE WRITE (NOUT, *) WRITE (NOUT,*) 'Original data values' WRITE (NOUT, *) DO 60 J = 1, M WRITE (NOUT, 99999) ' ', (X(I*M+J), I=0, N-1) 60 CONTINUE WRITE (NOUT, *) WRITE (NOUT,*) 'Original data written in full complex form' IFAIL = 0 CALL CO6GSF(M,N,X,U,V,IFAIL) DO 80 J = 1, M WRITE (NOUT, *) WRITE (NOUT,99999) 'Real ', (U(I*M+J),I=0,N-1) WRITE (NOUT, 99999) 'Imag', (V(I*M+J), I=0, N-1) 80 CONTINUE GO TO 20 ELSE WRITE (NOUT,*) 'Invalid value of M or N' END IF 100 STOP 99999 FORMAT (1X,A,6F10.4) END ``` #### 9.2 Program Data ``` CO6GSF Example Program Data 0.6772 0.6751 0.6362 0.1424 0.3854 0.1138 0.1181 0.7255 0.8638 0.8723 0.6037 0.6430 0.0428 0.4815 0.5417 0.2983 0.9172 0.0644 ``` #### 9.3 Program Results CO6GSF Example Program Results Original data values | | 0.3854 | 0.6772 | 0.1138 | 0.6751 | 0.6362 | 0.1424 | |--|--------|--------|--------|--------|---------|---------| | | 0.5417 | 0.2983 | 0.1181 | 0.7255 | 0.8638 | 0.8723 | | | 0.9172 | 0.0644 | 0.6037 | 0.6430 | 0.0428 | 0.4815 | | Original data written in full complex form | | | | | | | | Real | 0.3854 | 0.6772 | 0.1138 | 0.6751 | 0.1138 | 0.6772 | | Imag | 0.0000 | 0.1424 | 0.6362 | 0.0000 | -0.6362 | -0.1424 | | Real | 0.5417 | 0.2983 | 0.1181 | 0.7255 | 0.1181 | 0.2983 | | Imag | 0.0000 | 0.8723 | 0.8638 | 0.0000 | -0.8638 | -0.8723 | | Real | 0.9172 | 0.0644 | 0.6037 | 0.6430 | 0.6037 | 0.0644 | | Imag | 0.0000 | 0.4815 | 0.0428 | 0.0000 | -0.0428 | -0.4815 | [NP3546/20A] C06GSF.3 (last)